## SK 20 NHMH



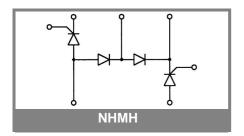
# SEMITOP®2

### Thyristor/Diode Module

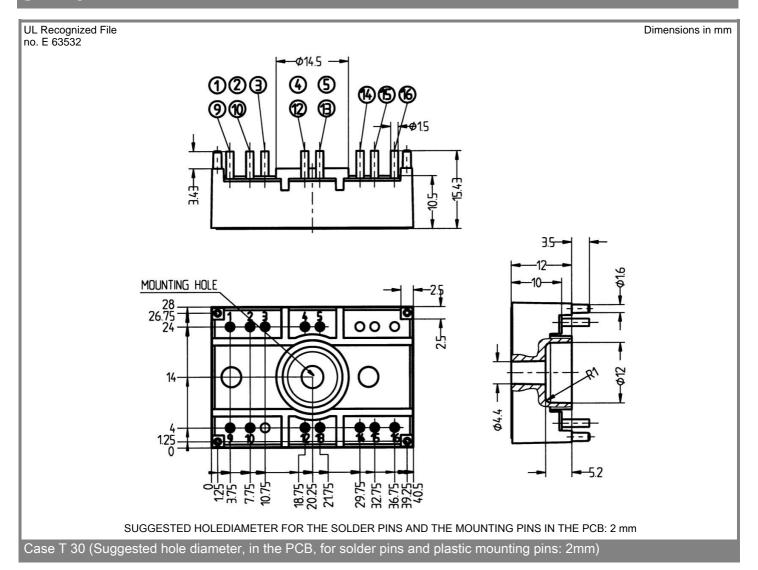
#### SK 20 NHMH

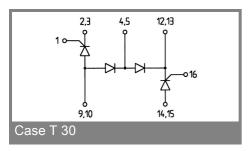
**Target Data** 

#### **Features**


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Glass passivated thyristor chip
- High surge currents

#### **Typical Applications\***


- UPS
- 1) Value limited by thyristor chip
- 2) Thermal resistance junction to heatsink


| $V_{RSM}$ | $V_{RRM}, V_{DRM}$ | I <sub>RMS</sub> <sup>1)</sup> (maximum values for cont. operation) 21 A |  |
|-----------|--------------------|--------------------------------------------------------------------------|--|
| V         | V                  | (T <sub>s</sub> = 85 °C)                                                 |  |
| 900       | 800                | SK 20 NHMH 08                                                            |  |
| 1100      | 1000               | SK 20 NHMH 10                                                            |  |

| Symbol Conditions  I <sub>TAV</sub> sin. 180°; T <sub>h</sub> =85°C            | 450 (380)<br>1000 (720) | Units A A |
|--------------------------------------------------------------------------------|-------------------------|-----------|
|                                                                                | 450 (380)               | A         |
|                                                                                | 450 (380)               | А         |
|                                                                                |                         |           |
|                                                                                |                         |           |
| $I_{TSM}/I_{FSM}$ $T_{vi} = 25 (125) ^{\circ}C; 10 \text{ms}$                  | 1000 (720)              | Α         |
| $T_{vi} = 25 (125) ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$                   | 1000 (120)              | A²s       |
| T <sub>stg</sub>                                                               | -40 + 125               | °C        |
| T <sub>solder</sub> terminals, 10 s                                            | 260                     | °C        |
| Thyristor                                                                      | -                       |           |
| $(dv/dt)_{cr}$ $T_{vi} = 125 ^{\circ}C$                                        | 1000                    | V/µs      |
| $(di/dt)_{cr}$ $T_{vi}^{yj} = 125 ^{\circ}\text{C}; f = 50 \dots 60 \text{Hz}$ | 50                      | A/µs      |
| $t_q$ $T_{vj} = 125 °C; typ.$                                                  | 80                      | μs        |
| $T_{H}$ $T_{vj} = 25 ^{\circ}\text{C}$ ; typ. / max.                           | 80 / 150                | mA        |
| $I_L$ $T_{vj} = 25 ^{\circ}\text{C};  R_G = 33  \Omega;  \text{typ. / max.}$   | 150 / 300               | mA        |
| $V_T$ $T_{vi} = 25 ^{\circ}C; (I_T = 75 \text{A}); \text{max}.$                | 1,9                     | V         |
| $V_{T(TO)}$ $T_{vj} = 125 ^{\circ}C$                                           | max. 1                  | V         |
| $r_T$ $T_{vi} = 125 ^{\circ}C$                                                 | max. 10                 | mΩ        |
| $I_{DD}$ ; $I_{RD}$ $T_{vj}$ = 125 °C; $V_{DD} = V_{DRM}$ ; $V_{RD} = V_{RRM}$ | max. 10                 | mA        |
| R <sub>th(j-s)</sub> cont. <sup>2)</sup>                                       | 1,2                     | K/W       |
| $T_{v_{j}}$                                                                    | -40 <b>+</b> 125        | °C        |
| $V_{GT}$ $T_{vj} = 25 ^{\circ}C; d.c.$                                         | 2                       | V         |
| $I_{GT}$ $T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$                           | 100                     | mA        |
| $V_{GD}$ $T_{vj} = 125 ^{\circ}C; d.c.$                                        | 0,25                    | V         |
| $I_{GD}$ $T_{vj}$ = 125 °C; d.c.                                               | 3                       | mA        |
| Diode                                                                          |                         |           |
| $V_F = T_{v_i} = 25  ^{\circ}C; (I_F = 80  A);  max.$                          | 1,45                    | V         |
| $V_{(TO)}$ $T_{vj} = 150 ^{\circ}C$                                            | 0,8                     | V         |
| $T_{\text{T}} = 150 ^{\circ}\text{C}$                                          | 7,5                     | mΩ        |
| $I_{RD}$ $T_{vj} = 150 ^{\circ}\text{C}; V_{RD} = V_{RRM}$                     | 4                       | mA        |
| R <sub>th(j-s)</sub> per diode <sup>2)</sup>                                   | 1,2                     | K/W       |
| T <sub>vj</sub>                                                                | -40 <b>+</b> 150        | °C        |
| Mechanical data                                                                |                         | •         |
| V <sub>isol</sub> a.c. 50 Hz;r.m.s.,1s (1 min)                                 | 3000 (2500)             | V         |
| M <sub>1</sub> mounting torque                                                 | 2                       | Nm        |
| w                                                                              | 19                      | g         |
| Case SEMITOP®2                                                                 | T 30                    |           |



### SK 20 NHMH





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

2 29-10-2007 DIL © by SEMIKRON